

Marometer height

$$P_m g H = \Delta P = \frac{1}{2} P_{air} U_i^2 \left(\frac{A_i^2}{A_2} - 1 \right)$$

$$\frac{50}{U_{1}} = \sqrt{\frac{2 \rho_{m} g H}{\rho_{air} \left(\frac{A_{1}^{2}}{A_{2}^{2}} - 1\right)}}$$

$$U_2 = 0$$

So from $B = D P_1 + \frac{1}{2} P_2 U^2 = P_2$
 $P_2 - P_1 = \frac{1}{2} P_2 U^2$

Manometer

$$P_m g H = \Delta P = \frac{1}{2} P_{ain} U^2$$

$$U = \sqrt{\frac{2P_m g H}{P_{air}}}$$

 $S_{2} \left(H_{1} - H_{2}\right) p g = \frac{1}{2} p \left(U_{2}^{2} - U_{1}^{2}\right) = U_{1}^{2} \left(\frac{H_{1}^{2}}{H_{2}^{2}} - I\right)$ $2 g \left(H_{1} - H_{2}\right) = U_{1}^{2} \left(\frac{H_{1}^{2}}{H_{2}^{2}} - \frac{H_{1}^{2}}{H_{2}^{2}}\right)$ $\frac{2 g}{U_{1}^{2}} = \frac{\left(H_{1} + H_{2}\right)\left(H_{1} - H_{2}\right)}{H_{2}^{2} \left(H_{1} - H_{2}\right)} = \frac{H_{1} + H_{2}}{H_{2}^{2}}$

$$U_1^2 = \frac{2gH_2^2}{H_1 + H_2}$$

Bernoull: (4) From #1 $P_2 - P_{\infty} = \frac{1}{2} P_{\alpha ir} U_1^2 \left(\frac{A_1}{A_2} - 1 \right)$ Liquid Flow $P_{\infty}-P_2 = Q_1 R = Q_1 \frac{128 \mu L}{\pi n^4}$ $Q_{L}\left(\frac{128\mu L}{TTD^{4}}\right) = \frac{1}{2}\rho_{ai} U_{i}^{2}A_{i}^{2}\left(\frac{1}{A_{a}^{2}}-\frac{1}{A_{i}^{2}}\right)$ $Q_{L} = \frac{1}{2} \rho_{air} Q_{Air}^{2} \left(\frac{1}{A_{2}^{2}} - \frac{1}{A_{1}^{2}} \right)$ 12811L TD4

 $\frac{Mass}{\partial r} (rv) = 0$ $\frac{Momentum}{\rho v \frac{\partial v}{\partial r} + \frac{\partial P}{\partial r}} = u \frac{\partial^2 v}{\partial z^2}$ $\frac{\partial}{\partial r} (\frac{v}{2} \rho v^2 + P) = u \frac{\partial^2 v}{\partial z^2}$

From Mass

Q: 2TTrhV So | U= Q | Velocity is 2TTTh | Known!

If we neglect Viscosity

 $P + J_2 p v^2 = Const.$

When
$$\Gamma = R_0$$
 $P = P_{\infty}$ $\mathcal{V}_{R_0} = \frac{Q}{2\pi R_0}h$
 $P + \frac{1}{2}\rho \mathcal{V}^2 = P_{\infty} + \frac{1}{2}\rho \mathcal{V}_{R_0}^2$
 $P - P_{\infty} = \frac{1}{2}\rho \left(\mathcal{V}_{(r)}^2 - \mathcal{V}_{R_0}^2\right)$
Compare to data (next page) looksgood.
Hotul force
 $F = 2\pi \int_{R_0}^{R_{044}} P(r) dr$
 R_{in}
Pat in #'s and we get $0.37 kg$,
 $P(etty rnuch exact$

With Viscosity $\frac{\partial}{\partial r} \left(P + \frac{1}{2} p v^2 \right) = -\frac{\rho v^2 f}{4f} = -\frac{\rho f}{4h} \left(\frac{Q}{2\pi h} \right)^2 - \frac{1}{r^2}$ Integrate $P + J_2 p \mathcal{V}^2 = \frac{Pf(Q)}{Yh} \left(\frac{1}{2\pi h}\right)^2 + C$ $P + \frac{1}{2}\rho v^2 = \frac{Pf}{4h} v^2 r + C$ $\left[P + \frac{1}{2}pv^{2}\left(1 - \frac{F}{2h}r\right) = Constant$

when we can fit t, data looks great .

Converging nozzle simulation

Figure 1: Pressure versus distance down the nozzle at Re=100, 1000,10000, and 10000 from top to bottom. Here pressure is plotted along the center streamline. The behavior at Re=100,000 is starting to converge to that would be predicted by Bernoulli's equation.

Figure 2: Same as above, only at Re=10. Here the effect of viscosity clearly shows a very different behavior than at high Reynolds number. The behavior we see here looks like hydraulic resistors in series.

Figure 3: For Re=10,000 we plot contours of the Bernoulli constant $P + \frac{1}{2}\rho v^2$, . We see the contours look nearly like the streamlines.

Lift on a flat plate.

Angle	Cd (Re=1000)	CL (Re=1000)	CD (Re=10,000)	CL (Re=10,000)	CL (Theoretical)
0	0.0857	0.00039	0.0436	0.001	0
1	0.0859	0.0937	0.0444	0.118	0.10960
2	0.0874	0.194	0.0465	0.234	0.21917
3	0.0895	0.287	0.0506	0.349	0.32867
4	0.0933	0.382	0.0577	0.463	0.43807
5	0.0989	0.479	0.0698	0.576	0.54734
6	0.108	0.515	0.086	0.675	0.65643
7	0.118	0.465	0.109	0.740	0.76534
8	0.125	0.415	0.131	0.749	0.87401
9	0.135	0.398	0.146	0.728	0.98241
10	0.146	0.407	0.16	0.701	1.09051

Figure 4: Values of lift and drag from Comsol simulation. For Re=1000 we used the laminar, stationary solver. For Re=10,000 we used the k-e turbulence model with the default settings. For the higher angle of attack we needed to use the transient solver to get a converged solution. Generating all the data took some time for the higher Re situation.

Figure 5: Plot of the data from the table shown previously for lift on a flat plate. The black like is the theoretical result from inviscid theory. Points are data taken at Re=40,000.

BL#1

Plane, 30 000ft Un 250 m ASSume Wing = 2 m from leading edge. P3000 F1 \$ 0.5 kg m3 M3000 Fr \$ 1.5 × 10-5 Pa.S Transition occurs Rea 105 $10^{5} = \beta UL_{10}^{5} (0.5)(250)L_{10}^{5}$ Lin 12 mm, distant from leading edge where Flow gots turbulent. For BL thickness, turbulent 1/1/7

BL#2
Assume
U= 15%

$$p=1.2$$
 the horm?
 $n=1.8$ x10⁻⁵ Pr.5
 $L \approx 1.5$ m
 $Re = PUL$ 1.5 x10^C
be comes turbulene when $Re \approx 10^5$
 $10^5 = (1.2)(15) L$
 1.8 x15⁻⁵ = D $L = 10$ cm.
 $S_{Houd} = \frac{0.37}{R_e^{15}} = D$ $\int_{Houd} = 3.2$ cm

÷

Water
$$p = 1000 \text{ kg/m}^3$$

 $M = 10^{-3} P_{4} - 5$
 $Re = 10^{5} = \frac{PUx}{M} = \frac{(1000)(1^{\frac{m}{3}})x}{10^{-3}}$
 $\frac{4}{10^{-3}}$
 $\frac{10^{-3}}{10^{-3}}$

See plot.

Hy to Sturt, let's assume turbulent Over whole plane, Since laminar Nonly First/0:

$$C_{F} = \frac{\overline{L}(x)}{\frac{1}{2}\rho u^{2}} = \frac{0.0592}{Re_{x}} = \frac{0.0592}{(\rho u \times)^{1}s}$$

$$C_{d} = \frac{1}{2} \int_{0}^{C_{f} dx} = \frac{1}{2} \int_{0}^{C_{f}} C_{f} = \frac{1}{2} \int_{0}^{C_{f} 0.05 \, q_{2}} \frac{1}{R_{e}^{15}}$$

$$W_{kn}Re_{L} = 10^{4}$$

$$C_{d} = 0.0047$$

$$F_{oru} = C_{d} \frac{1}{2}\rho u^{2} = (0.0047) \frac{1}{2} (1000) 1^{3}$$

$$midn = 2.35 \frac{N}{m}$$

$$F_{oru} = 2.35 N$$

Force -
$$\int_{0}^{L} \overline{T}(x)$$

= $\frac{1}{2}\rho U^{2} \left(\int_{0}^{L_{1}} \frac{0.664}{\sqrt{\rho_{MM}}} dx + \int_{L_{1}}^{L_{1}} \frac{0.0542}{\sqrt{\rho_{MM}}} dx \right)$
= $\frac{1}{2}\rho U^{2} \left(\frac{1.325 L_{1}}{\sqrt{R_{2,L_{1}}}} + \frac{0.0744 (1 - (\frac{1}{22})^{4/3})}{R_{2}} \right)$
 $L_{1} = RO 0.1 m$
 $R_{2}L_{1} = 10^{5}$
= $\frac{1}{2}\rho U^{2} \left(0.00042 + 0.0047 (1 - 0.16) \right)$
= $\frac{1}{2}\rho U^{2} \left(0.00444 \right)$
Note that if we account for mixed
Laminur / turbulent flow, Cp chargo by
 $v 10^{2}$, Which Corresponds to first 10%
being luminur from Simple Calculation.