
Fluid motion

I. COMSOL

1. Flow over a cylinder in free stream of uniform flow. Go back to your model from last week. Adjust the Reynolds
number to 1; just to get a nice and stable solution to start with. Adjust the boundary conditions. The inlet
should be uniform flow with x velocity of 1. Outlet on the right should be constant pressure. The upper and
lower boundaries should have a ”moving wall” with a velocity of 1. Make the region of flow that you are solving
go from −5 < y < 5 and −10 < x < 20. Center the cylinder with a diameter of 1. Adjust your comsol simulation
to compute the net force on the object (I can show you how to do this in class - but add ”derived values” in
results, select line integration, select the walls of the cylinder, click on replace expression, under component
1, laminar flow, auxiallary variables, total stress - select normal stress x-component. Convert this number to
a predicted drag coefficient - being careful of the units. You can either run different Reynolds numbers by
hand, or learn to set up a parametric sweep (again, I can show you). Either way, you will want to space your
points in Re logarithmically. Compute drag as a function of Reynolds number using the stationary solver from
Re=0.01 to Re=200. Compute drag as a function of Reynolds number using the transient solver from Re=50
to Re=2,000. You don’t need to go overboard - just select 10 values of Reynolds number or something along
those lines. Create a single plot of drag coefficient versus Reynolds number and compare to the experimental
data. You can look up the result online to compare.

2. No consider a ellipse shape for the problem above where the long end is pointed toward the flow direction. Make
the ellipse have a 0.5 b-semiaxis and 5 for the a-semiaxis. Recompute the problem above. Make a plot of drag
coefficient versus Reynolds number and overlay the result of the cylinder. What conclusion can you draw about
the elongated shape at low and high Reynolds number?

3. For flow in a circular pipe, Poiseuille’s Law which relates applied pressure drop to volumetric flow rate is,
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This solution is valid for laminar flow when Re < 2000. First, compute flow in pipe in comsol and confirm that
your result is in agreement with this law.

For different cross sectional shapes, the basic form of the law holds but with different numerical correction
factors. Using the hydraulic diameter, Dh = 4A/P (where A is the cross-sectional area and P is the perimeter)
we can write the law for different cross sectional shapes as,
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where C is a numerical constant you can compute in Comsol. Find C for a square, a 2x1 rectangle, a 4x1
rectangle, and an equilateral triangle cross sectional shape.

4. Consider flow in a tube. At low Reynolds number, a neutrally buoyant particle placed at the the tube entrance
will ”go with the flow”. Whatever streamline the particle starts on, the particle will stay on forever. Nothing
interesting happens. It is a curious fact that a particle in a tube at ”moderate” particle Reynolds number (i.e.
greater than 1, but still laminar flow) will not stay on the streamline it starts on. As the particle traverses the
tube, it will feel one force which will push it toward the wall and another that will repel it. The particle will
then assume a fixed radial location in tube. If the particles come into the tube in random radial locations, the
particles leave the tube confined to an annular ring; all particles are at the preferred radius.

Let’s explore whether this basic effect can be determined via comsol. Again, in the interest of computational
time, let’s do the problem in 2D. Set up a dimensionless channel of height 2 (from −1 < y < 1). Set the length
to 20 units. Place the particle (a circle) in the middle of the channel with respect to x. Set the particles diameter
to 0.1 to start with. Set the inlet velocity field to be u(y) = 1 − y2. Set the outlet to be zero pressure. The
upper and lower boundaries should be solid walls with no-slip. Set the viscosity to 0.01 such that the channel
Reynolds number is 100 and the particle Reynolds number is 10. Compute the x and y component of the drag
force on the circle. The result for the x force should be different than in problem 1 since the flow is confined in
a channel. Compute the y component of the drag force as a function of y location of the particle. What does
this analysis say the equilibrium position of the particle would be? Can you think of an effect (that would exist
in our 2D problem as well as the 3D problem) that is not addressed by the current analysis?
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II. HAND CALCULATION

Normally in fluid dynamics we assume the no-slip condition at a solid wall. This condition is empirically true for
most cases, though there are exceptions where slip has been observed. An interesting case where there is “apparent”
slip is when you have charged walls, ions in the fluid (like a dissolved salt solution), and applied electric fields.

A material like glass will typically become negatively charged when the solid comes in contact with water. This
negatively charged wall will attract positive ions from the aqueous salt solution to screen the surface charge. However,
molecular thermal motion will keep the ions fluctuating such that a diffuse layer of positive charge will form in the
liquid. This layer will have a thickness on the order of 10 nm (that’s nanometers) for a 1 mM (milli-molar) salt
solution, the length scale is called the Debye length. More than 10 nm away from the wall, the solution will be neutral
with the number of negative ions balanced by the number of positive.

In this case, if you apply an axial electric field down the channel, the electric field will exert a force on the positively
charged ions near the wall and the resulting force will drag the fluid along. This electrical force will only be exerted
in this charged layer which is 10 nm thick. Thus, even though the fluid at the wall will obey the no slip condition,
the fluid 10nm away will be in motion. The net result after is that the flow in a channel which is much larger than 10
nm will have an apparent slip velocity at the wall. This slip velocity is proportional to the electric field. The formula
for the slip is Uslip = −ε0εwζE/µ, where ε0 is the vacuum permittivity, εw is the relative permittivity for water
(approximately 80), E is the applied electric field, µ is the dynamic viscosity, and ζ is the so-called zeta-potential,
the voltage difference between the wall and the solution far away. In typical glass/water systems ζ ≈ −100 mV.
This theoretical result is over 100 years old, it is called the Helmholtz-Smoluchowski equation. The effect, called
electroosmosis has been known experimentally for over 200 years and was first observed in porous clays. Sometimes it
is more convenient to measure the combination of parameters and call it the electroosmotic mobility, b = −ε0εwζ/µ,
and simply express the slip velocity as Uslip = bE.

If we have a long, thin tube with no applied pressure difference and the electroosmotic (EO) slip velocity is a
constant, you would find trivially, that the solution to the Navier-Stokes equation is a constant fluid velocity. All the
fluid moves down the tube at the slip velocity. In recent years, these electroosmotic flows have been exploited in a
number of modern micro and nanoscale systems. Given the results for pressure driven flow, the hydraulic resistance
scales poorly as the channel or pipe becomes very small. Thus in small systems, electroosmosis is a practical and
efficient pump. It is also a simple pump because it has no moving parts, just apply a voltage across your channel.

While all this background may sound complicated, the final result is quite simple. From the known (or measured)
system parameters we can compute the slip velocity. We then solve the flow problem using the slip velocity as the
boundary condition for the Navier Stokes. At a solid surface, the normal component of the velocity is zero while the
tangential velocity is given as the slip value.

OK. That was all background. Now the actual problems.

• Consider a small tube of radius r and length L. Assume a pressure ∆P and voltage ∆V difference are applied
across the tube. The tube is long such that we can consider the flow invariant in the axial direction. The
pressure gradient dP/dx = −∆P/L and the electric field E = −∆V/L are constants along the length of the
channel. We will assume the electroosmotic mobility is a known constant (usually comes from measurement).
Thus, the apparent slip velocity at the wall has a known value Uslip. Solve the Navier Stokes equations for this
case. State the velocity profile as a function of r and how it depends on the system parameters, r, L,∆P,∆V, µ,
and Uslip. Compute the average fluid velocity i.e. Uaveπr

2 = Q where Q is the total volumetric flow rate. Write
your expression for the average velocity in the form, Uave = A∆P + B∆V , where A and B are constants that
you will figure out. If you are really smart you can use superposition and look at the solution for pressure driven
flow in a pipe (section 8.9 of the book).

• Consider a tube of radius 10 microns and length 10 mm, containing an aqueous solution. The measured mobility

is b = 7 × 10−8 m2

V·s and the electric field is in Volts/m. The applied voltage is 5 kV. Compute the mean flow
velocity if there is no applied pressure gradient. Compute the applied pressure needed to obtain the same mean
flow velocity if there were no applied electric field. Repeat the above calculations if the tube has a radius of 1
micron.

• In some applications, we can intentionally coat or modify the solid surface to change the surface charge and
thus change the apparent slip velocity. Consider a case where the channel from 0 < x < L1 has slip velocity
Us,1 and L1 < x < L has slip velocity Us,2. Consider flow in such a system where we have two regions of two
different slip velocities, but NO applied pressure. Since the channel is long compared to the other scales, we
can assume everything is uniform in the axial direction and simply assume we have two channels which are
connected together in series.



3

Since the slip velocity is different in the two regions, but the total flow through any cross section of the channel
must be the same, something has to give. What happens is that while the net applied pressure is zero, each
region will have to acquire an internally generated pressure gradient. This pressure gradient will enhance or
retard the electrically driven slip flow such that each region has the same total flow rate. The pressure gradient
in each region is a constant and described as dP/dx|1 = −∆P1/L1, and dP/dx|2 = −∆P2/L2 where the total
applied pressure is zero, ∆P1 + ∆P2 = 0. Due to continuity of electrical current, the electric field is a constant
in both regions, E = E1 = E2 = ∆V/L. The average flow in both regions must be equal, Uave,1 = Uave,2. Use
all the above relationships as well as your formula from part 1, Uave = A∆P +B∆V , to determine the pressure
gradient in each region.

• Assume the following parameters. A tube of radius 10 microns and total length 10 mm. The electroosmotic

mobility is measured to be b = 7 × 10−8 m2

V·s in region 1. In region 2 it is reduced to b = 0.7 × 10−8 m2

V·s . The
applied voltage is 5000 Volts. Consider cases for L1/L2 = 1/4, 1, and 4. Compute the average fluid velocity in
both regions for all cases of L1/L2. Note that the average velocity in region 1 and region 2 better be equal in
each case. Check your result and make sure that the limiting cases work, i.e. L1 and L2 going to zero limit to
the result you derived in part 1.


