
HW 1: Dimensional analysis

I. READING AND LECTURES

To support this homework, you should have already completed the following.

• Read chapters 1 and 2 from the book.

• Watch “Dimensional analysis” video on the youTube playlist.

• Read “Principle of similitude”, by Lord Rayleigh

• Watch this movie by G.I. Taylor. It’s awesome.

”Low-Reynolds-Number Flows” https://www.youtube.com/watch?v=51-6QCJTAjU

II. PI THEOREM

• Derive with the table method and Pi Theorem, Rayleigh’s statement that “The velocity of propagation of
periodic waves on the surface of deep water is as the square root of the wavelength.” State what you had to
assume/know to get this answer.

• A famous problem in dimensional analysis was when G.I. Taylor, the biggest name in fluid dynamics for the 20th
century, calculated the energy released during the first atomic bomb tests (a classified secret) from unclassified
images that were released to the public. His argument was based on dimensional analysis. His physical insight
was that the radius of the blast r (which he could measure from the images), was only a function of time t
(which he also new from the images), the density of the surrounding air ρ and the energy released E. Thus,
r = f(t, E, ρ). Express this functional dependence in dimensionless form.

• Derive with the table method and Pi Theorem, the form for the drag force on a sphere. Imagine a sphere
of diameter, D, traveling at constant velocity U , in fluid with density ρ and viscosity µ. (Note that µ is the
dynamic viscosity and has units of Pascal-seconds or [M]/[L T]). Express the drag force, F , as a function of the
other variables.

There are two important limits in this problem that we will discuss in further detail as the course goes on.

– For large objects at high speeds (i.e. a skydiver, an airplane, a baseball), the fluid inertia (i.e. the mass
density) dominates the drag force and viscosity is experimentally observed not to influence the drag force.
In this limit the drag force only depends on ρ, D, and U .

– Small objects very low speeds (i.e. a small organism, a speck of dust) the fluids inertia is unimportant and
thus its mass density is observed not to influence the drag force. In this limit the drag force only depends
on µ, D, and U .

Derive the form of the drag force on the sphere in these two limits. If these limits don’t not make physical sense
to you yet, that is OK, we will discuss this at length later in the course.

• Take an index card. Cut it in a square shape. Hold it straight out arms length with the flat side facing the
ground and drop it. Time the descent with a stop watch. Take a couple of measurements - there will be some
variation as the card will flutter to the ground differently every time. If you bend the card a little bit upward
you can get it to fall reasonably steady. You can also try to tape two cards together to make it a little thicker
and it will not flutter as much. Cut the square so it has about half the side length of the original. Repeat the
experiment. Make another square of half the size again and repeat the experiment. Use the drag law derived in
the last problem for the limit where viscosity does not matter to explain your experimental findings. Assume
the card is mostly at terminal velocity and thus the force of gravity balances the drag force.

• Consider a steel sphere of diameter D dropped in a very viscous fluid. Assume that we are in the regime where
viscosity dominates. The sphere is dropped in the fluid, comes to terminal velocity very quickly, then descends
down a container of a certain depth. If you double the diameter of the sphere, how does the time to reach the
bottom change?
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III. GEOMETRIC SIMILARITY

In fluid dynamics, if an object is scaled such that it is geometrically similar, a model can be used to extract
information about a real system. This is useful because instead of constructing a real experiment on a bridge, we can
build a model and test the wind loads in a small wind tunnel, for example. The mass of a geometrically similar model
scales as L3 where L is characteristic length. Imagine a cylinder who’s diameter is 1/10 the length. The volume of

the cylinder is V = π
4

(
L
10

)2
L; i.e. V ∼ L3 where the symbol ∼ means scales as. In determining scaling laws, we don’t

care about the constants just how things scale. For the scaling law, we only care that the volume goes up as the cube
of the length. If I double the length the volume goes up by a factor of 8. Even for a more complicated object, if the
model is geometrically similar, then there is only one characteristic length for the overall size of the object and the
volume or mass scales as the cube of the length.

Now some problems:

• Consider the problem of lift for an airplane and other flying things such as birds and bugs. The lift force F is
found experimentally to depend on the velocity U , the fluid density ρ, and the area of the wing A. As with the
drag problem, if the flow speed is high enough then the fluid viscosity does not matter. Using the Pi theorem,
derive an expression for the lift force as a function of the other parameters. When the object is flying at constant
speed the lift force must equal the weight.

If we now approximate all winged objects of some characteristic size (say their length) L as geometrically self-
similar, then we can express the surface area A and weight W as proportional to particular powers of L (see
above). Write down these power-law relationships and use them to develop a scaling relationship between the
weight W and the cruising velocity U alone. Notice how strong your scaling is (i.e. how big the exponent is).

Verify that your scaling is correct by plotting the following data (in Matlab) on a Log-Log plot. Note the units
and convert to a consistent set of units. Plot a line with the power predicted by your simple analysis. Recall
that on log-log plots a function of the form y = xm is a straight line with a slope of m.

Object Mass Wing Area A [m2] Cruising Speed U

Crane fly 30 mg 7.5e-5 3 m/s

Common starling 80 g 0.02 10.3 m/s

Canadian goose 5.7 kg 0.28 23 m/s

Cessna Citation 2.0 metric tons 18.2 120 mph

Boeing 747 350 metric ton 511.0 570 mph

IV. PUDDLES

A very viscous fluid is poured out on a flat table. Over time the liquid spreads out into a circular puddle. We can
take a movie of the process and record the radius of the puddle as a function of time. This was done for three different
initial volumes of the same fluid. The important parameters in the problem are the radius, r, time t, density ρ, initial
volume V , viscosity µ, and acceleration due to gravity g. The Pi theorem would say that there are 3 parameters in
the problem.

However, we can do better with a little simple reasoning - without actually doing the hard work of solving the
problem in any exact sense. Since the spreading is so slow, we are in a regime where the fluids inertia (or mass
density) is not important for the dynamics. However, the density of the fluid is important in setting the gravitational
force which is what causes the fluid to spread. Thus, we assume that the density of the fluid only enters the problem
through its combination with g. The “proper” parameter to include is then ρg - not these variables independently.
With the assumption of ρg as the parameter, then the Pi theorem says there are only 2 dimensionless parameters
that matter.

Take the data from the website. When you import the data into MATLAB, radius is in cm, time in seconds, and
volume in mL. Plot r vs. t on log-log coordinates for all experiments on one plot. Plot the 2 dimensionless parameters
for all experiments on one plot and see if the data collapse.

While this experiment might seem completely irrelevant, it turns out that this viscous spreading has been observed
magma spreading of lava domes. The puddle experiment is a form of a gravity current - flows driven by density
differences. Gravity currents are ubiquitous in ocean and atmospheric flows and are critical to understanding weather
and climate.


