Vector calculus

1. Consider the scalar field,

$$f = \exp(-10(x^2 + y^2))$$

- Sketch by hand the contours of the scalar field on the domain -1 < x < 1, -1 < y < 1.
- Compute the gradient and sketch the vector field ∇f . You can use wolfram alpha.
- Compute the Laplacian ∇^2 . You can use wolfram alpha.
- 2. Consider the vector function given by,

$$\mathbf{f} = x\mathbf{i} + y\mathbf{j}$$

- Skecth by hand the vector field.
- Compute the divergence.
- Consider a circle of radius R centered at the origin; compute $\mathbf{f} \cdot \mathbf{n}$.
- Evaluate $\int \mathbf{f} \cdot \mathbf{n} dS$ along the same circle.
- Evaluate $\int \nabla \cdot \mathbf{f} dV$ for the same circle.
- Consider a square of side length L centered at the origin, $\int \mathbf{f} \cdot \mathbf{n} dS$ along the boundary of the square.
- Convert the vector field to one described in cylindrical coordinates.
- Look up the divergence operator in cylindrical coordinates and recompute the divergence of the field.
- 3. Consider the vector function given by,

$$\mathbf{f} = -x\mathbf{i} + y\mathbf{j}$$

- Sketch the vector field.
- Compute the divergence.
- \bullet Consider a square of of side L centered at the origin; compute $\mathbf{f} \cdot \mathbf{n}$.
- Evaluate $\int \mathbf{f} \cdot \mathbf{n} dS$ along the same square.
- 4. Demonstrate the
 - $\nabla \times (\nabla \phi) = 0$ where ϕ is a scalar field.
 - $\nabla \cdot (\nabla \times \mathbf{v}) = 0$ where \mathbf{v} is a vector field.
- 5. The operator $\mathbf{v} \cdot \nabla$ where \mathbf{v} is the vector field of the fluid velocity will show up a lot in our equations in this course. Expand the operator out in component form where the components of velocity are $\mathbf{v} = [u, v, w]$ for the x, y, and z directions.