
Boundary layers, drag, and internal flows

I. DRAG ESTIMATES

The following problems are estimates only. Clearly state what you assumed.

1. How much power is lost to drag on your favorite car going 55 mph? 75 mph? If drag were the only loss, what
would the top speed be based on the power output of the engine?

2. A reporter is standing outside during a hurricane. How high does the wind speed need to be before the reporter
cannot stand normally (straight up with both feet together) ?

II. BOUNDARY LAYERS

1. A passenger plane is flying at cruise altitude of 30,000 ft. How far from the leading edge of the wing does the
boundary layer become turbulent (if at all) ? Considering the flow along the fuselage, what is the boundary
layer thickness on the fuselage near the back of the plane? This is an estimate, state your assumptions clearly.

2. The coefficient of friction for a laminar boundary layer is given as Cf = 0.664/
√
Rex. For a turbulent boundary

layer it is empirically given as Cf = 0.0592/Re1/5x . The coefficient of friction is defined as Cf (x) = τ(x)/ 1
2ρV

2,
the normalized local shear stress. Derive an expression for the total drag coefficient of a flat plate(i.e. integrate
the local expression for the total- and I won’t judge if you use Wolfram alpha). Since the flow transitions around
Re = 105, you will need to properly add the laminar and turbulent solutions together.

3. Using the expression from the previous problem, create a dimensional plot of the total drag force (per unit
width) as a function of plate length for flow in air. Plot a family of curves for velocities of 1, 10, and 100 m/s.
Use log scales to make everything fit nicely on one graph. This exercise is just to give you a feel for the order
of magnitude of flat plate drag force.

III. PIPE FLOW

1. A 1/2 inch pipe has water flowing through it at 10 liters per minute. The pipe is copper which has a typical
roughness of 0.002 mm. What is the pressure drop required to drive this flow in a 10 meter length of pipe?

2. If we double the applied pressure in the previous problem, what is the resulting flow rate?

IV. TURBULENT INTERNAL FLOWS

In class we will demonstrate the experimental setup. Essentially air blows out of an opening in a flat plate. Another
plate is brought close to the opening and this plate is pulled upward and levitates like an upside down air hockey
puck, even though the air is blowing outward. The behavior seems counterintuitive, but is easily explained with basic
fluid dynamics.

• Derive the basic equations. To make progress, we will simplify the Navier Stokes equations significantly.
Start with the Navier-Stokes equations for an incompressible, Newtonian fluid in cylindrical coordinates. Assume
flow is only radial, vr, such that the theta and z components of the velocity are zero. Also assume the problem
is symmetric and all theta derivative drop out. The radial momentum equation and conservation of mass with
these simplifications are
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Conservation of mass therefore tells us that

vr =
Q

2πrh
,

where Q is the total flow rate and h is the gap height. We can now take this simplified momentum equation
and group some terms together to obtain,
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We can see then that if the viscosity is taken as zero, then we have Bernoulli’s equation along a streamline from
the center to the outer edge. However, lets leave in viscosity and integrate the equation over the gap height,∫ H
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If we define v̄r as the integrated, averaged velocity then we have
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Note that τ = µ∂vr
∂z is the shear stress at the solid surface,
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If the flow were laminar we could have some hope of solving for the shear stress exactly. However, the flow is
certainly turbulent and the shear stress τ is given by the empirical parameter friction factor, f . Empirically,
for flow in a pipe we describe the shear stress as 4τ = 1

2ρv
2f , where L is the length and D the diameter. The

factor of 4 is just by convention. To simplify things we will assume the friction factor is a constant and will not
bother to account for its dependence on Reynolds number.

The resulting equations for conservation of mass and momentum allow us to easily solve for the pressure and
radial velocity as a function of radius;
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• Solve the equations. The equations are simple enough that you can integrate them directly and solve for the
pressure as a function of radius. The boundary conditions is that the pressure at the outer radius matches that
of the atmosphere. To get the total force on the plate you will need to integrate the pressure over the entire
surface of the plate. This force needs to balance the weight of the plate in order for the system to remain stable.
You can use Wolfram alpha or some other symbolic manipulator to help keep things straight if that helps, but
it is easy enough to do by hand.

• Compare to experiments. You should now be able to compare what this relatively simple model predicts
versus what the experiment says. We will provide data for two different configurations providing total flow,
pressure distribution, and plate height. You should be able to select a single friction factor that models both
data sets reasonably well, though you can use a slightly different factor for each experiment.


