
Week 7: Solutions to Navier-Stokes

I. PROBLEMS

The following three problems are ones that have shown up in my own research over the past few years. While the
original problem I was interested was supposedly more complicated than the ones I give here, solving these simpler
problems gave me insight that allowed me to reduce something I thought was complicated to something simpler. I’ll
discuss the applications in class.

1. Normally in fluid dynamics we assume the no-slip condition at a solid wall. This condition is empirically true
for most cases, though there are exceptions where slip has been observed. An interesting case where there is
“apparent” slip is when you have charged walls, ions in the fluid (like a dissolved salt solution), and applied
electric fields. A material like glass when it comes in contact with an aqueous solution will often have surface
groups which lose a proton. The solid wall then becomes negatively charged.

This negatively charged wall will attract positive ions from the aqueous salt solution to screen the surface charge.
However, thermal motion at the molecular scale will keep the ions from forming a perfect layer and a diffuse
layer of positive charge will form in the liquid. This layer will have a thickness on the order of 10 nm (that’s
nanometers) for a 1 mM (milli-molar) salt solution, the length scale is called the Debye length. More than 10
nm away from the wall, the solution will be neutral with the number of negative ions balanced by the number
of positive.

In this case, if you apply an axial electric field down the channel, the electric field will exert a force on the
positively charged ions near the wall and the resulting force will drag the fluid along. This electrical force will
only be exerted in this charged layer which is 10 nm thick. Thus, even though the fluid at the wall will obey the
no slip condition, the fluid 10nm away will be in motion. The net result after is that the flow in a channel which
is much larger than 10 nm will have an apparent slip velocity at the wall. This slip velocity is proportional to
the electric field. The formula for the slip is Uslip = −ϵ0ϵwζE/µ, where ϵ0 is the vacuum permittivity, ϵw is the
relative permittivity for water (approximately 80), E is the applied electric field, µ is the dynamic viscosity, and
ζ is the so-called zeta-potential, the voltage difference between the wall and the solution far away. In typical
glass/water systems ζ ≈ −100 mV. This theoretical result is over 100 years old, it is called the Helmholtz-
Smoluchowski equation. The effect, called electroosmosis has been known experimentally for over 200 years and
was first observed in porous clays. Sometimes it is more convenient to measure the combination of parameters
and call it the electroosmotic mobility, b = −ϵ0ϵwζ/µ, and simply express the slip velocity as Uslip = bE.

If we have a long, thin tube with no applied pressure difference and the electroosmotic (EO) slip velocity is a
constant, you would find trivially, that the solution to the Navier-Stokes equation is a constant fluid velocity.
All the fluid moves down the tube at the slip velocity. In recent years, these electroosmotic flows have been
exploited in a number of modern micro and nanoscale systems. Given the results you have already found for
pressure driven flow, you saw that the hydraulic resistance scales poorly as the channel or pipe becomes very
small. Thus in small systems, electroosmosis is a practical and efficient pump. It is also a simple pump because
it has no moving parts, just apply a voltage across your channel.

While all this background may sound complicated, the final result is quite simple. From the system parameters
we can compute the slip velocity. We then solve the flow problem using the slip velocity as the boundary
condition for the Navier Stokes. At a solid surface, the normal component of the velocity is zero while the
tangential velocity is given as the slip value.

OK. That was all background. Now the actual problems.

• Consider a small tube of radius r and length L. Assume a pressure ∆P and voltage ∆V difference are
applied across the tube. The tube is long such that we can consider the flow invariant in the axial direction.
The pressure gradient dP/dx = ∆P/L and the electric field E = ∆V/L are constants along the length
of the channel. We will assume the electroosmotic mobility is a known constant (usually comes from
measurement). Thus, the apparent slip velocity at the wall has a known value Uslip. Solve the Navier
Stokes equations for this case. State the velocity profile as a function of r and how it depends on the
system parameters, r, L,∆P,∆V, µ, and Uslip. Compute the average fluid velocity i.e. Uaveπr

2 = Q
where Q is the total volumetric flow rate. Write your expression for the average velocity in the form,
Uave = A∆P + B∆V , where A and B are constants that you will figure out. If you are really smart you
can use your result from Problem 2 and realize that superposition works in this case!
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• Plot some sample velocity profiles as u(r)/Uslip (i.e. velocity as a function of radius). See if you can think
of a good way to plot the data such that there is a single parameter that captures the relative strength of
the electrically and pressure driven flows.

• Consider a tube of radius 10 microns and length 10 mm, containing an aqueous solution. The measured
mobility is b = 7 × 10−8 1

V·s (that’s 1/(Volts-Seconds) and the electric field is in Volts/m) The applied
voltage is 5 kV. Compute the mean flow velocity if there is no applied pressure gradient. Compute the
applied pressure needed to obtain the same mean flow velocity if there were no applied electric field. Repeat
the above calculations if the tube has a radius of 1 micron. Comment on whether the size of the pressure
gradient is ”big” or not.

• In some applications, we can intentionally coat or modify the solid surface to change the surface charge
and thus change the apparent slip velocity. Consider a case where the channel from 0 < x < L1 has slip
velocity Us,1 and L1 < x < L has slip velocity Us,2. Consider flow in such a system where we have two
regions of two different slip velocities, but NO applied pressure. Since the channel is long compared to the
other scales, we can assume everything is uniform in the axial direction and simply assume we have two
channels which are connected together in series.

Since the slip velocity is different in the two regions, but the total flow through any cross section of the
channel must be the same, something has to give. What happens is that while the net applied pressure is
zero, each region will have to acquire an internally generated pressure gradient. This pressure gradient will
enhance or retard the electrically driven slip flow such that each region has the same total flow rate. The
pressure gradient in each region is a constant and described as dP/dx|1 = ∆P1/L1, and dP/dx|2 = ∆P2/L2

where the total applied pressure is zero, ∆P1 +∆P2 = 0. The electric field is a constant in both regions,
E = E1 = E2 = ∆V/L, thus the slip velocity is constant along the length of the channel. The average
flow in both regions must be equal, Uave,1 = Uave,2. Use all the above relationships as well as your formula
from part 1, Uave = A∆P +B∆V , to determine the pressure gradient in each region.

• Assume the following parameters. A tube of radius 10 microns and length 10 mm. The electroosmotic
mobility is measured to be b = 7× 10−8 1

V·s in region 1. In region 2 it is reduced to b = 0.7× 10−8 1
V·s . The

applied voltage is 5000 Volts. Compute and plot the velocity profile in both regions as a function of r in
units of mm/s. Plot the velocity profile for L1/L2 = 1/4, 1, and 4. Compute the average fluid velocity in
both regions for all cases of L1/L2. Note that the average velocity in region 1 and region 2 better be equal
in each case. Check your result and make sure that the limiting cases work, i.e. L1 and L2 going to zero
limit to the result you derived in part 1.

2. In industrial applications of pumping viscous fluids, it is often useful to add a small amount of immiscible, less
viscous fluid to reduce pumping losses. In pipe flow, sometimes it is possible to achieve a state where the more
viscous fluid will assume the core of the pipe and the less viscous fluid will encapsulate it and remain in contact
with the wall (this is the thermodynamically favored state). The less viscous fluid acts to lubricate the flow.
This problem is discussed in the book.

We will consider a variation on this problem. Consider 2D channel of height H. From 0 < y < h, we have fluid
1 with a high viscosity, µ1. From h < y < H we have water with a viscosity µ2. The flow is pressure driven
with a constant pressure drop of ∆P/L.

• Write the NS equations and cross out terms that are zero. Write the final simplified Navier stokes equations.
We will assume that we are looking at the steady state behavior in a very long channel.

• Formulate the problem - i.e. state the final equation and boundary conditions. Treat the problem as two
separate problems, one for each fluid. Match the boundary conditions at y = h. The velocity and stress
must be equal at the interface between the two fluids.

• Solve the problem by integrating with respect to y and apply the boundary conditions.

• Calculate the flow rate of each fluid.

• Calculate the overall hydraulic resistance, R = ∆P/Q. Plot the effective resistance as a function of
Q2/(Q1 +Q2). Normalize your resistance plot to the resistance if the flow were all water. Plot curves for
different values of the viscosity ratio between the two fluids.

3. A 2D block is sliding at constant speed U . The block has length 2L and is parallel to a stationary wall below
it. Fluid fills the small gap between the block and the stationary wall. The block has a step in it such that
the first half of the block from 0 > x < L has a gap of height h and the second half of the block has a gap of
height h/2. The length L is large compared to the gap height so we are safe ignoring effects that may occur
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right at the entrance and at the step. In the long regions of constant height, at first glance it would seem logical
to conclude that the flow should be the Couette solution and have a linear velocity profile. However, if there
were a linear velocity profile in the two sections, then the total mass flow through the two sections would differ
- thus this is not a possible solution. Therefore a pressure gradient must develop in the gap to drive a parabolic
pressure driven flow profile superimposed on the linear one profile. This internal pressure gradient develops even
though there is no applied pressure across the length of the gap. In one section under the block, the flow rate is
increased by the internal pressure gradient and in the other it must be suppressed. This situation is analogous
to the first problem in this homework.

• Before trying to solve the problem, sketch the velocity fields and pressure as a function of length for this
problem. Try to reason what the answer is first.

• For flow in a 2D slot, derive the general velocity profile that results from a gap of uniform height with an
applied pressure gradient and a sliding wall.

• Integrate this expression across the gap to obtain the total flow rate. Express the flow rate as two terms,
one due to pressure and one due to the moving wall.

• For the block sliding problem with two heights, equate your expression for the total flow in the two regions
in order to solve for the pressure distribution under the block. Write out the expression for the maximum
pressure.

• Confirm your results using Comsol at a low Reynolds number (i.e. use Normalized units and set the density
and viscosity to 1). Work in dimensionless terms. Set the gap heights to one and one-half, and the total
length to 20.

• Imagine we now have 4 constant height sections, which are at heights h, 7
8 h, 3

4 h, and 1
2 h. Each section

is L/2 in length. See if you can guess the solution. Try it in Comsol to confirm/deny your guess.

• Compare the previous result in Comsol to that where the height varies linearly from h to h/2 over the
length 2L.


